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Abstract. We study the dynamics of adaptation in a spatially structured population. The model assumes
local competition for replication, where each organism interacts only with its nearest neighbors and is
inspired by experimental methods that can be used to study the process of adaptive evolution in microbes.
In such experiments microbial populations are grown on petri dishes and allowed to adapt by serial passage.
We compare the rate of adaptation in a structured population where the structure is maintained intact to
those where movement of individuals can occur. We observe that the rate of adaptive evolution is higher
and the mean effect of fixed beneficial mutations is lower in intact structures than in structures with
mixing.

PACS. 87.23.-n Ecology and evolution – 87.23.Cc Population dynamics and ecological pattern formation
– 87.23.-Kg Dynamics of evolution

Introduction

Adaptation by Natural Selection is a very important as-
pect of the evolution of natural populations but it is still
far from being completely understood. Early theoretical
works tried to predict the fate of beneficial mutations in
simple populations, particularly those with no structure.
One of the most striking results of this is that in finite
populations, not all beneficial mutations that arise will be
fixed. More specifically, Haldane showed that when pop-
ulations are large and the fitness advantage conferred by
a new mutation is small, the probability that a beneficial
mutation will be fixed is only twice its selective value [1].
His model was a very simple one where one locus with two
alleles was the sole responsible for the fitness of an indi-
vidual and it holds true for populations with sexual repro-
duction where each locus can be thought of as segregating
independently of the rest due to frequent recombination.

As more loci are considered and if recombination is in-
frequent, the mutations can not be thought of as evolving
independently. In fact, asexual populations are affected
by the Hill Robertson effect, which states that selection
at one locus reduces the efficacy of selection at a linked
locus [2]. As a consequence of this effect, adaptation in
asexual organisms has been shown to be strongly affected
by the presence of deleterious mutations [3–6] and of other
competing beneficial mutations segregating in the popula-
tion [7–9]. This last type of interference was named clonal
interference and has been shown theoretically and exper-
imentally to limit the rate of adaptation of asexual pop-
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ulations [2,9–11]. The increase of the rate of fixation of
beneficial mutations slows down as the mutational input
on the population becomes very large. It has also been
shown that clonal interference affects the distribution of
mutations that get fixed: the bigger the mutational input,
the more competition there is, so higher effect mutations
get fixed [12]. Furthermore, the importance of this inter-
ference depends on the deleterious mutation rate [4,12].

The dynamics of adaptation has also been studied in
some models of structured populations where competition
is local as opposed to the unstructured model which as-
sumes that every individual competes with all others. In-
deed in natural populations competition is probably more
commonly local. The dynamics of adaptation in such a
population has been well established [13–18]. In particu-
lar, Maryuama, demonstrated that for some types of struc-
ture (such as the island model and other models that as-
sume conservative migration) the same predictions hold
as in the unstructured population. But this is not valid
when extinction and recolonization are allowed [19–21].
More recently, Gordo and Campos [22] have shown that
when more than one locus is considered, clonal interfer-
ence causes the structure to have a cost on adaptation,
i.e., the probability that a beneficial mutation is fixed de-
creases if there is structure and this decrease is bigger the
higher the mutational input.

A great number of bacteria species live as popula-
tions structured in space. In particular, many species can
form complex structures called biofilms, in which individ-
uals may stay imprisoned in the biofilm matrix or have
some degree of freedom to move [23] (and for a review
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see [24]). This movement depends on the species and on
environmental conditions. So we can consider two simple
extremes: no movement of individuals in space and a large
degree of mixing in the structured population. Bacteria
adaptation in biofilms should lie at an intermediate be-
tween these extremes. Here we extend on the model used
in [22], relaxing the assumption that the structure remains
intact. Competition remains local but now the neighbors
are randomized after a given number of generations. Since
we assume bacteria biofilms to be an intermediate between
an intact structure and one with mixing, we want to test
how mixing affects the adaptation of a population. Fur-
thermore, the results obtained here can be readily tested
in experimental evolution with bacteria cultures growing
on a static environment [25] or be completely random-
ized [26,27].

The model

We consider a population of asexual haploid organisms.
The individuals are arranged in a two-dimensional regular
lattice of linear size L with periodic boundary conditions
and where each organism occupies a cell in the lattice. The
population size is N = L × L.

The evolution of the population follows a modified
Wright-Fisher model to account for the chosen spatial
structure. In each generation the individuals are all de-
scendant from the previous one (non-overlapping gener-
ations) and competition is local. We consider the Moore
neighborhood, where each individual competes with its
eight nearest neighbors, so that an organism occupying
cell i can only be the descendant of individuals that oc-
cupied neighboring cells in the previous generation. The
probability that an individual occupying cell i at genera-
tion t + 1 is the offspring of the individual occupying cell
j at t generation is given by:

pij =
πj∑
l πl

(1)

where πj denotes the fitness value of individual j and
the sum is taken over cell i and its eight neighbor sites.
To model mutation events, we consider the infinite sites
model. Each individual inherits all the mutations from its
parent plus an additional number of deleterious mutations
given by a Poisson with parameter U . Every deleterious
mutation is assumed to decrease fitness by a constant fac-
tor (1− sd). Beneficial mutations occur at a constant rate
Ub per individual and they increase fitness by (1+sb). The
sb for each beneficial mutation is taken from an exponen-
tial distribution with parameter β [28–31].

g(sb) = β exp(−βsb). (2)

Although a more realistic model would be to consider a
distribution of effects for deleterious mutations, up to the
present what has been determined for microorganisms is
only the mean deleterious effect [32]. So, lacking experi-
mental support for assuming a given distribution, we make

the simplest assumption of a constant sd. On the other
hand, for beneficial mutations, there are both theoretical
reasons [28,29,31] and experimental evidence [33] for as-
suming an exponential distribution. The fitness of each
individual depends on the number of deleterious (k) and
beneficial (kb) mutations its genome has, such that its fit-
ness is given by:

π(k, kb) =

[
kb∏

i=1

(1 + sb(i))

]

(1 − sd)k. (3)

At time t = 1 all individuals are free of mutations. Then
there is an additional equilibration period (of 100 gen-
erations) with no beneficial mutations being introduced.
After this period we introduce one beneficial mutation in
a randomly chosen individual. Subsequent advantageous
mutations take place at a constant rate Ub per individ-
ual. We have ascertained that our results do not change
whether we consider a longer period of equilibration.

We assume that the individuals are mixed randomly
in the population periodically. Every T generations we
randomly place the individuals in the lattice such that in
the next generation they will have new competitors. By
doing this we try to mimic the evolution experiment that
can easily be done with bacteria in the laboratory, allowing
in this way to directly test our results. When T → ∞ then
the structure of the population is intact and our results
will be the same as those previously studied [22]. This way
T will modulate the randomness of the competition.

Results

1. Probability of fixation of a beneficial mutation

The rate of adaptation (Kb) is defined as the rate at which
beneficial mutations fix in a population. This is affected by
both the rate of appearance of new beneficial mutations
(Ub) as well as their probability of fixation (Pfix). To un-
derstand how mixing of a spatially structured population
affects its adaptation, we first ask whether the probabil-
ity of fixation of a given beneficial mutation is affected by
the periodicity of this mixing. In order to do this, we in-
troduce a beneficial mutation with a given selective value
sb at time T = 0. After T generations, the population is
randomized so that each individual now competes with
a different (and random) set of neighbors in the popula-
tion. We let the simulation run until the beneficial mu-
tation is either fixed or lost. Several simulations allow us
to estimate the frequency of fixations. It was previously
shown [22] that the probability of fixation of a beneficial
mutation in this type of intact structure is the same as
in an unstructured population for this simple one locus
model.

Intuitively one could expect that, the more frequent
mixing is, the more global competition will be and so the
result would approach the unstructured model. However,
this is not the case. Figure 1 shows how mixing of the en-
vironment affects the probability of fixation of a beneficial
mutation.
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Fig. 1. Probability of fixation (Pfix) of a beneficial mutation
as a function of the periodicity of mixing T . The squares cor-
respond to sb = 0.1, diamonds to sb = 0.05 and triangles to
sb = 0.01. In all simulations the population size is 2500 indi-
viduals.

As expected [22], we see in Figure 1 that when T → ∞
the probability of fixation is approximately twice the se-
lective value of the mutation. However, when mixing is
frequent (for example when T = 10 generations), the prob-
ability of fixation of a beneficial mutation becomes much
smaller. Furthermore, the value of T above which we re-
cover the result for an unstructured population depends
on sb. From Figure 1, when sb = 0.1, values of T big-
ger than 50 lead to a Pfix of approximately 2sb but for
sb = 0.01 this occurs for T > 200. This suggests that the
frequency at which a mutation is, at the time of mixing,
will influence its probability of fixation (see also [22]).

The probability that a beneficial mutation is lost due
to drift depends on its frequency [34,35]. In our model,
when mixing occurs early after the appearance of the mu-
tation, the mutant individuals will be scattered through-
out the lattice. So locally, their frequency will become low
and their probability of loss increases. This accounts for
the fact that a low T decreases greatly the probability
of fixation. If enough generations pass before a shuffling
occurs, the mutation will have the chance to grow in fre-
quency (provided it escaped the initial stochastic loss) be-
fore it is scattered. This will increase the chance that in-
dividuals with beneficial mutations are grouped together
and thus increases the probability of their fixation. The
number of generations needed to reach this critical fre-
quency will depend on the selective value of the mutation.

2. Adaptation and mixing

It is known from studies in both unstructured popula-
tions [9] and for intact structures [22] that when multiple
loci are considered, the rate of increase of the adaptation
rate (Kb) with the mutation rate to beneficial mutations
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Fig. 2. The rate of fixation of adaptive mutations (Kb) as a
function of the periodicity of mixing (T ). The data are averages
over 100 independent simulations. The lattice size is L = 50
(full symbols) and L = 100 (open symbols). We have consid-
ered β = 100 in all cases, triangles correspond to Ub = 0.001 ,
squares to Ub = 0.0001, and circles Ub = 0.00001. No deleteri-
ous mutations were introduced.

(Ub) diminishes as larger mutation rates are considered.
This is due to the fact that if many beneficial mutations
are segregating in the population, they compete with each
other and their probability of fixation diminishes. This ef-
fect has an impact not only on Kb but also on the mean
effect of mutations that eventually reach fixation (sbfix),
which increases with Ub [9,22].

We have studied how Kb and sbfix depend on the fre-
quency of mixing for different mutation rates (Ub). Fig-
ures 2 and 3 summarize the results.

As expected from the results in Figure 1, the adapta-
tion rate increases with T . When mixing is frequent, most
mutations are lost and those that get fixed have a high
selective coefficient (Fig. 3). Again this suggests that the
frequency that mutations reach at the time of mixing is
critical to their fate. As a consequence, for large values of
T , there are more fixations and the mean selective value
of the mutations that become fixed is lower. In a sense, it
becomes easier to fix a mutation if there is no mixing, even
if it has a low effect. Furthermore, above a certain value
of T , Kb and sbfix become constant. This critical value
depends on the mean selective value of the newly arising
mutations which suggests that when the mutations reach
a certain frequency, mixing becomes irrelevant.

In microorganisms, the population sizes are much
higher than the ones we have considered. However, our
qualitative results are independent on the population size.
For example, in Figure 2 we see the same kind of depen-
dence of Kb on T , for a much larger N . However, for the
same value of T , Kb and sbfix are bigger in a larger popula-
tion because the mutational input (NUb) is higher. Nev-
ertheless, mixing has the same qualitative effect on the
adaptation dynamics.
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Fig. 3. Mean selective value of the fixed mutations as a func-
tion of the periodicity of mixing (T ). The data are averages over
100 independent simulations. The lattice size is L = 50 (full
symbols) and L = 100 (open symbols). The other parameters
are β = 100 , Ub = 0.001 (triangles), Ub = 0.0001 (squares),
and Ub = 0.00001 (circles). No deleterious mutations were in-
troduced.

Given the effect of mixing on the probability of fixation
of a beneficial mutation with a given sb (Fig. 1), we expect
the same qualitative results if a different distribution of
selection coefficients is considered.

3. Adaptation in the presence of deleterious mutations

Since most newly arising mutations are deleterious, we
next examined how they affect the dynamics of adaptation
in our model. As previously shown for the intact struc-
ture [22], if the deleterious mutation rate (U) is low, which
implies that the mean number of deleterious mutations is
small, they have very little effect on Kb and on sbfix. If,
however, their rate of appearance is high, they decrease
the adaptation rate in intact structure populations [22].

In Figures 4 and 5 we show how deleterious mutations
affect both Kb and sbfix as we introduce mixing in our
structure. We have studied two different values of Ub: a
low value and a high value where clonal interference is
most pronounced.

From Figure 4 we observe that Kb becomes less de-
pendent on T , when deleterious mutations are present.
The overall reduction in Kb reflects the reduction in the
proportion of mutation-free genotypes when U �= 0. This
can be interpreted as a lowering of the effective popula-
tion size, so fewer adaptive mutations are fixed [3]. The
reduction is higher for intact structures and high values
of Ub.

Figure 5 also shows that if mixing is frequent, the mean
selective value of fixed beneficial mutations is almost un-
changed by the presence of deleterious mutations. This is
expected as long as the effect of deleterious mutations is
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Fig. 4. Mean selective value of the fixed mutations as a func-
tion of T . The data are averages over 100 independent simula-
tions. The parameter values are L = 50, β = 100, and the ben-
eficial mutation rate is Ub = 0.0001 (squares) and Ub = 0.001
(triangles). Open symbols correspond to U = 0 and full sym-
bols correspond to U = 0.1 and sd = 0.1.
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Fig. 5. The rate of fixation of adaptive mutations as a function
of T . The data are averages over 100 independent simulations.
The parameters are L = 50, β = 100 and Ub = 0.0001 (squares)
and Ub = 0.001 (triangles). Open symbols correspond to U = 0
and full symbols correspond to U = 0.1 and sd = 0.1.

solely to cause a decrease in the effective population size.
However, as mixing becomes less frequent, the mean ef-
fect of mutations that get fixed is reduced (Fig. 5). It is
in this regime that clonal interference plays a more im-
portant role because more mutations are segregating in
the population. Deleterious mutations can reduce clonal
interference [5,12] and that can account for the reduction
of the mean fitness effect of fixed beneficial mutations as
T increases.
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Discussion

We have studied a population with a simple spatial struc-
ture where the individuals are arranged in a regular lattice
and competition is local. Gordo and Campos [22] demon-
strated that in such a structure, the adaptation rate is
lower than without structure due to an increase of the
clonal interference phenomenon. Since in natural popula-
tions a completely intact structure is probably not realis-
tic, we have studied the impact of mixing on the process of
adaptation. In the model, we periodically randomize the
neighbors so that each individual can now compete with
a different set of competitors than his ancestors did. It is
certain that during the long evolutionary process of mi-
croorganisms, they will find different competitors as they
move from host to host.

Unlike what one could expect, this did not approx-
imate the results for an unstructured population where
each individual competes with all others in the population.
In fact, the more we randomize individuals, the lower the
adaptation rate is. This result is explained by an incre-
ment of the effect of genetic drift. The difference is that in
both unstructured and intact structured populations, drift
is less important as the frequency of the mutant with the
beneficial mutation increases; by scattering a beneficial
mutation, our model returns it to a state of low frequency
locally where it may be lost due to drift.

In the natural world most bacteria aggregate as
biofilms. In fact biofilms are now one of the hottest topics
in microbiology, as they are a common cause of persis-
tent bacterial infections [24] (and for a review see [23]). In
these biofilms there is spatial structure and some move-
ment of individuals. So, their adaptation dynamics does
not correspond either to the unstructured model, or to an
intact structure. It corresponds to a structure where indi-
viduals compete locally but may also move to other places
in the biofilm or even colonize a different space altogether
(which may or may not already have other bacteria). As
such, the adaptation dynamics of biofilms should be an
intermediate between our regime of frequent mixing and
that of no mixing. This implies that their adaptation is
slower than in an intact structure but quicker than in one
with complete mixing as is illustrated by Figure 6.

In laboratory conditions, bacteria can grow on fixed
media, thus competing only locally. Furthermore these
cultures may be propagated by maintaining the structural
integrity or by randomizing them periodically. Some ex-
periments have been done using this kind of experimen-
tal procedure [25,26]. However, these authors were study-
ing very particular aspects of adaptation. Namely, in one
case [25] the population was structured in space but it also
varied such that there were three distinct environmental
conditions to which bacteria could adapt. The authors fo-
cused on an analysis of the interactions between organ-
isms adapted to different niches. It would be interesting
to investigate adaptation within each niche and compare
it to our results. In the second case [26], no comparisons
with the intact structure were made. However, the same
experimental setup may be used to test our results exper-
imentally.
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Fig. 6. Adaptation rate as a function of the fraction of organ-
isms that are mixed. Simulations were done as described previ-
ously except in the middle column where only a random 30%
of individuals were taken from their positions and randomly
redistributed in the lattice every T generations. The Parame-
ters are L = 50, β = 100 and Ub = 0.001 for all simulations,
and T = 2 for the simulations with mixing. Data correspond
to the mean values of 100 independent simulations.
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